Listening to whales with neutrino telescopes - page 2


Journalists are very welcome to attend the whole event. A press briefing will be held on the 1st December 16:15 at the Palais de la Découverte in Paris, where the following projects will be presented: 

  • LIDO - for listening to the deep sea environment from home over the internet, 
  • The CLOUD experiment at CERN, which studies the impact of cosmic rays on clouds and climate, 
  • 3D-radiography projects for volcanoes, using particle detectors 

Probing new territories 
Astroparticle physics is an excellent example of interdisciplinarity, combining the research and technologies of both particle physics and astrophysics. Over the last few years, new methods for observing the Universe have been devised. With astroparticle physics, it is no longer a question of simply studying the light that comes from the stars. Rather, the very particles emitted by cosmic bodies can be detected and analysed. Cosmic rays and neutrinos have a whole new story to tell about the violent processes underway in black holes and supernovae. Be it tracking dark matter particles in underground laboratories, or fishing for neutrinos in the ocean's depths, today's physicists can appear almost as characters from Jules Verne, modern-day explorers of the wonders of our Universe. 

By deploying large infrastructures in unusual places, astroparticle physics offers new opportunities for other scientific disciplines for studying the atmosphere, the ocean, biology in extreme conditions... 

Developing new technologies 
Astroparticle physics also offers a perspective of extremely promising technologies to come. Just as it is possible to image the human body with X-rays, particle physics detectors should soon be able to make three dimensional images of volcanoes and thus help in better understanding their mechanisms and indeed risk prevention. As they interact very weakly with ordinary matter, some particles such as neutrinos and muons cross huge thicknesses of rock, revealing the densities of the different layers they go through. In addition, geoneutrinos could allow for studies of the Earth's core. alt

Better understanding of the atmosphere and climate Cosmic rays are charged particles that bombard the Earth's atmosphere from outer space. The deployment of large cosmic ray experiments such as the  Pierre Auger Observatory in Argentina, or indeed satellite-based experiments, helps to continuously and precisely monitor the atmosphere on a large scale. Such experiments offer the possibility to study the role that cosmic rays could play in triggering lightning in thunderstorms. Moreover, studies suggest that cosmic rays might even have an influence on the amount of cloud cover through the formation of aerosols. CLOUD is an experiment at CERN in Geneva that uses a cloud chamber to study the possible link between cosmic rays and cloud formation. The results could greatly modify our understanding of clouds and climate.