ACADEMIA
University of Pittsburgh wins $1.2 million grant to analyze anesthesia big data
The National Science Foundation awarded $1,182,305 to the University of Pittsburgh Swanson School of Engineering to support research into using machine learning and Big Data to analyze electronic anesthesia records and prevent postoperative complications and death.
Heng Huang, John A. Jurenko Professor in Computer Engineering at Pitt, is principal investigator on the study titled "SCH: INT: New Machine Learning Framework to Conduct Anesthesia Risk Stratification and Decision Support for Precision Health" (Award No. 1838627). Dr. Huang will analyze more than two million cases of anesthesia data taken from 303 UPMC clinics and treatment centers.
"A human doctor uses guidelines from manuals in combination with subjective experience to determine patients' risk factors and needs," says Dr. Huang. "We are using artificial intelligence and machine learning to develop an objective way to predict surgical outcomes based on historical patient data."
{module In-article} Dr. Huang is collaborating with University of Pittsburgh co-principal investigators Dan Li, assistant professor in the School of Nursing, and Fei Zhang, certified registered nurse anesthetist in the Department of Anesthesiology and Perioperative Medicine.
The research team will design new deep learning algorithms and software to mine patient data and identify common risk factors in patients about to receive anesthesia. They will then develop a "decision support system" to better inform doctors when patients are at high risk for post-operative complications and in-hospital mortality.
Dr. Huang explains, "Many patients come in to the hospital with so much information about them on file that doctors don't have a comprehensive way to consider all the variables and their interactions. With a computer, you really can do a better job than a human of determining how all that data is going to predict patient outcomes."
To create a large-scale, machine learning framework capable of predicting patient outcomes, Dr. Huang will employ several emerging computational technologies including deep learning, semi-supervised learning, and large-scale optimization.
Dr. Huang has been creating new machine learning techniques to address biomedical applications throughout his career. Some of his past projects involved analyzing big imaging genomic data to help identify Alzheimer's disease at earlier stages, data mining electronic medical records to personalize patient treatment, integrating histopathological images and cancer genomics for personalized medicine and building interactive gene expression databases.
"I've focused on applying computational techniques to biomedical applications for about the past 15 years because you can really make a big impact on improving people's quality of life and benefiting humanity with A.I. in ways humans cannot achieve alone," says Dr. Huang.